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A B S T R A C T

Pharmaceutical pellets are spherical agglomerates manufactured in extrusion/spheronization process. The
composition of the pellets, the amount of active pharmaceutical ingredient (API) and the type of used excipients
have an influence on the shape and quality of dosage form. A proper quality of the pellets can also be achieved by
identifying the most important technological process parameters. In this paper, a knowledge discovery method,
called dominance-based rough set approach (DRSA) has been applied to evaluate critical process parameters in
pellets manufacturing. For this purpose, a set of condition attributes (amount of API; type and amount of ex-
cipient used; process parameters such as screw and rotation speed, time and temperature of spheronization) and
a decision attribute (quality of the pellets defined by the aspect ratio) were used to set up an information system.
The DRSA analysis allowed to induce decision rules containing information about process parameters which
have a significant impact on the quality of manufactured pellets. Those rules can be used to optimize the process
of pellets manufacturing.

1. Introduction

Methods of knowledge discovery and data mining are increasingly
exploited in pharmaceutical technology for process and product opti-
misation (Gardiner and Gillet, 2015). These methods are applied for
both, development of a new product, and quality control or risk man-
agement of existing products. The process analytical technology (PAT)
initiative and quality by design (QbD) approach to product design and
production (ICH Q8–Q10) have been recently incorporated by the
European Medicines Agency and the US Food and Drug Administration
(Yu, 2008). These methods ensure higher quality products and faster
development. Basically, the framework aims at a better process un-
derstanding and process design to ensure a required quality. Different
methods have been applied to perform these analysis such as statistical
tools (DoE—Design of Experiment), data mining and computational
intelligence methods, like Artificial Neural Networks (ANNs), decision
trees, genetic algorithms, and fuzzy logic (Lourenço et al., 2011).
Simple DoE methods have some disadvantages. Underlying the use of
two-level factors is the belief that the resultant changes in the depen-
dent variable are basically linear in nature. However, this is often not

true, because many variables are related to quality characteristics in a
non-linear manner. Fractional design problem is the implicit assump-
tion that higher-order interactions do not matter. When some attributes
are set to a particular level, one attribute may be negatively related to
product quality. Again, in fractional factorial designs, in particular
higher-order interactions (greater than two-way), will escape detection.
DoE methods are appropriate for construction of a prognostic model,
however not for cause-effect relationship analysis.

In this paper, we present an application of a novel knowledge dis-
covery technique, which overcomes the above mentioned dis-
advantages, and it allows to handle a mixture of discrete and con-
tinuous data. The presented method is based on rough set theory (RST).

Dominance-based rough set approach (DRSA) is an implementation
of RST adapted to ordinal data. It was chosen as the most suitable
method to discover synthetic rules that exhibit monotonic relationships
between composition and process parameters of pellets on the one
hand, and their final quality on the other hand. It is well suited for this
application because it handles qualitative and quantitative attributes,
without the need of discretization of quantitative attributes or trans-
formation of qualitative attributes into quantitative ones. DRSA is also
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able to deal with possible inconsistencies in the information table prior
to induction of rules. Moreover, it handles global or local monotonic
relationships between values of condition attributes and the quality
classes (Greco et al., 2001). These characteristics of DRSA perfectly fit
the type of data to be analyzed. Using this method, we obtain decision
rules with ranges of values of condition attributes in particular classes
of pellet's quality.

Pellets are spherical agglomerates in a range between 0.5 and
2.0 mm. Their optimal shape and reproducible surface make them ideal
for coating and multiparticulate applications (Swarbrick, 2007). Wet
extrusion/spheronization (E/S) is an established and widespread tech-
nique to produce pharmaceutical pellets. Pellet preparation using this
method is based on 3 different processes: extrusion, spheronization, and
fluid bed drying. Parameters affecting pellet properties are the type of
excipients: microcrystalline cellulose (MCC), carrageenan, starch, lac-
tose; the water content of extrudate, the physicochemical properties of
active pharmaceutical ingredients (API) and technological parameters
(screw speed, the number of die holes, spheronizer speed, the time of
spheronization, spheronizer temperature) (Fekete et al., 1998). The
shape of pellets can be described by a parameter called aspect ratio
(AR); the ratio of the maximum length of pellets divided by the or-
thogonal width. To evaluate the relationship between the parameters
describing the manufacturing process and properties of the product
chemometric, data analysis methods are useful. RST is a mathematical
approach to knowledge discovery from imperfect data, i.e., affected by
partial inconsistency. DRSA extends the original RST on inconsistency
not only with respect to indiscernibility, but also with respect to
dominance, which permits analysis of ordinal data (Błaszczyński et al.,
2012). With artificial neural networks and statistical methods, DRSA
constitute data analysis tools useful for knowledge discovery from data.
RST has been successfully applied in medical area, e.g., for assessing
preterm birth risk (Tsumoto, 2000), diagnosis of acute appendicitis
(Wilk et al., 2005), breast cancer treatment (Załuski et al., 2004; Chen
et al., 2011), prediction of heart attacks (Srinivas et al., 2014), diag-
nosis of diabetes (Margret Anouncia et al., 2013) and tuberculosis (Uçar
et al., 2013). There are some pharmaceutical applications, i.e. struc-
ture-activity relationships analysis of antifungal activity imidazolium
compounds (Pałkowski et al., 2015), antibacterial activity quaternary
ammonium chlorides (Pałkowski et al., 2014; Pałkowski et al., 2012),
and fluoroquinolones (Liu et al., 2007).

The aim of this study was to discover critical attributes (process
parameters) of pellet formulation which significantly affect the shape of
the pellets, and to determine the impact of carrageenan on pellet for-
mulation process as an alternative to using of MCC, allowing to avoid
problems with disintegration of the pellets. Moreover, this study was to
discover relationships between pellet properties (formulation, techno-
logical conditions) and product quality. This is the first application of
DRSA in pharmaceutical technology.

2. Material and methods

2.1. Data set

Data for the analysis describing the parameters of production and
the quality of the pellets come from the Kleinebudde team published
previously (Thommes and Kleinebudde, 2007; Bornhöft et al., 2005;
Thommes et al., 2007; Thommes and Kleinebudde, 2006a; Thommes
and Kleinebudde, 2006b; Thommes and Kleinebudde, 2008). Analyses
were related to the effect of various excipients and technological
parameters on the shape of pellets. The formulations of the pellets were
characterized by conditional attributes describing quantitative compo-
sition: the amount of API (acetaminophen, theophylline, mesalazine,
hydrochlorothiazide, phenacetin, chloramphenicol, dimenhydramin,
lidocaine); amount of excipient (lactose, mannitol, starch, dicalcium
phosphate, MCC and κ-carrageenan (Satiagel® CT 27 — Degussa, Ger-
many; Gelcarin® GP 812 NF (Gel812); Gelcarin® GP 911 NF (Gel911) —

FMC, USA; Genugel® X-930-03 — CPCelco, Denmark). Another condi-
tional attributes were API properties (logP, solubility); manufacturing
process parameters: extrusion (screw speed, the number of die holes),
spheronization (rotation speed, time, temperature), drying (tempera-
ture); loss on drying. Decision attribute classifying objects was aspect
ratio parameter (AR). Table 1 presents condition attributes used in the
information system.

The parameters describing spheronization conditions, namely
spheronization time, speed, and temperature, screw speed, and number
of die holes were optimized in previous experiments by Kleinebudde
et al. (Thommes and Kleinebudde, 2007; Bornhöft et al., 2005;
Thommes et al., 2007; Thommes and Kleinebudde, 2006a; Thommes
and Kleinebudde, 2006b; Thommes and Kleinebudde, 2008). The va-
lues of those parameters presented in the analyzed information system
appeared to be robust regarding the aspect ratio of the pellets.

In the course of analysis, AR values were discretized as follows:

– optimal (spherical) pellets, called class 1: AR≤ 1.1,
– improper (irregular) pellets, called class 2: AR > 1.1.

The above discretization comes from an observation (Thommes and
Kleinebudde, 2006a) that pellets with an optimal shape possess AR
value lower or equal to 1.1, while pellets with AR value > 1.1 are
improper.

2.2. Information system

The data set analyzed using DRSA is organized in the tabular form of
an information system, where a set of objects (products= pellets) is
described by a finite set of condition attributes and one decision attri-
bute (quality class of the pellets). Rows of such a table correspond to
objects and columns to attributes, and at the intersection of rows and
columns there are values called descriptors.

Table 2 presents a part of the information system describing a set of
different formulations of pellets. The whole information system was
built based on 227 pellets formulations and can be found in the Sup-
plementary material.

2.3. Decision rules

Decision rules represent important cause-effect relationships be-
tween values of condition and decision attribute. Rules consist of con-
dition and decision parts, called premise and conclusion, respectively.
The rules have the following syntax: “if the conjunction of elementary

Table 1
Condition attributes and their domains.

Condition attribute Domain

API [%] 10–95
LogP of API −0.4–1.6
API solubility [g/l] 0.7–700
Lactose [%] 0, 20, 40, 60
Mannitol [%] 0, 20, 40, 60
Starch [%] 0, 20, 40, 60
CaHPO4 [%] 0, 20
Satiagel [%] 0, 20
Gel812 [%] 0, 20
Gel911 [%] 0, 5, 10, 20
Genugel [%] 0, 20
MCC [%] 0, 20
Screw speed [rpm] 50, 100, 125, 200
Number of die holes 3, 13, 23
Rotation speed [rpm] 500, 750, 1000
Spheronization temperature [°C] 15, 25, 30, 45
Time of spheronization [s] 15–300
Temperature of drying [°C] 60, 105
Loss on drying [%] 31.77–125
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conditions on selected attributes is fulfilled, then the object belongs to
some indicated quality class”. An elementary condition has one of the
forms: “attribute ai has value at least ri”, “attribute ai has value at most
si”, “attribute ai has value equal to ti”, “attribute ai has value in the
interval [ri, si]”, “attribute ai takes a value from the finite set {ri, si, ti,
…}”, where ri, si, ti, … are some values belonging to the domain of
attribute ai, discovered in the induction process. Rules involve only
significant condition attributes that have the greatest impact on the
decision. Therefore, the set of decision rules is presented in the form of
a tabular information system from which unnecessary and redundant
information relating to cause-effect relationships in the analyzed data
has been removed.

Rules are characterized by their strength defined as a ratio of the
number of pellets matching the condition part of the rule to the total
number of pellets formulation in the sample. Sets of decision rules,
which are essential for the analysis presented in this work, were in-
duced from pellets data, which were collected in an information system.
A part of the system can be seen in Table 2.

Decision rules are also characterized by Bayesian confirmation
measures, which indicate usefulness of knowledge represented by a
premise for a correct classification of pellets to a given class (Greco
et al., 2016). It therefore quantifies the degree to which the premise
supports the conclusion of the rule.

2.4. Knowledge discovery technique

DRSA analysis was performed using jRS (java Rough Set) library and
jMAF (java Multi-criteria and Multi-attribute Analysis Framework)
software. Decision rules were generated by VC-DomLEM algorithm
(Greco et al., 2001). Considering the order of condition attributes value
sets positive or negative monotonic relationship with decision attri-
butes can be distinguished. Positive relationship imply situation where
the greater condition attribute value, the better class of decision attri-
bute is achieved (in this case better quality of pellets). Analogously, in
negative relationship it is assumed that the smaller value of condition
attribute, the more likely it is to obtain improper (irregular) pellets.
Some of the attributes have been transformed by duplication of attri-
bute value, i.e., we are considering such attributes in two copies. The
first one is assumed to have positive (gain) and the other one to have
negative monotonic relationship (cost). The applied transformation of
data is non-invasive and does not cause disruption in discovering spe-
cific monotonic relationships between condition and decision attributes
(Błaszczyński et al., 2009). The rule induction algorithm constructs
decision rules involving elementary conditions on one or both copies of
particular attributes. For example, in a rule indicating the assignment of
a pellet to class 1 there may appear the following elementary conditions
concerning attribute ai:

• ↑ai(pellet)≥ vali1,

• ↓ai(pellet)≤ vali2,

• ↑ai(pellet)≥ vali1 and ↓ai(pellet)≤ vali2, which boils down to
ai(pellet) ∈ [vali1, vali2,] if vali1≤ vali2,

where ↑ai and ↓ai are positive (gain) and negative (cost) copies of at-
tribute ai, respectively. Please note that the transformation of attributes
permits discovering global and local monotonic relationships between
properties of pellets and their class assignment. The monotonic re-
lationship is global when it can be expressed by a single elementary
condition concerning positive or negative attribute. Local monotonicity
relationship requires conjunction of two elementary conditions of dif-
ferent type.

2.5. Bayesian confirmation measure s

The effect of condition attributes on predictive accuracy was ver-
ified by determining the value of the confirmation measure for eachTa
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attribute. From among many available Bayesian confirmation mea-
sures, we selected measure called s, defined as a difference of condi-
tional probabilities Pr(conclusion | premise)− Pr(conclusion | ¬pre-
mise). The confirmation measure s takes the values between −1 to 1.
The higher a positive value of s, the greater impact has the premise on
the conclusion. Analogically, the negative value of s speaks about dis-
confirmation of the conclusion by the premise. A zero value of s means
no impact. This relatively simple measure has good mathematical
properties, as demonstrated in (Greco et al., 2016).

The confirmation measure s is also useful to rank condition attributes
according to their impact on the correct classification of pellets
(Błaszczyński et al., 2011). In this case, the Bayesian confirmation mea-
sure quantifies the degree to which the presence of attribute ai in premise,
denoted by ai⊳premise, provides evidence for or against correct classifi-
cation by a rule. Measure s(correct, ai⊳premise) is, in this case, defined as
follows, s(correct, ai⊳premise)=Pr(correct|ai⊳premise)−⊳Pr(correc-
t|ai¬⊳premise). In result, attributes present in the premise of a rule which
classifies correctly, and attributes absent in premise of a rule which
classifies incorrectly, are getting more relevant.

2.6. Stratified cross-validation

Stratified 5-fold cross-validation procedure was used to assess the
predictive accuracy of rules. Variable consistency bagging (VC-bagging)
(Błaszczyński et al., 2010a; Błaszczyński et al., 2010b) was applied to
increase accuracy of results produced by VC-DomLEM. In this proce-
dure, the analyzed data set was divided randomly into training set and a
test set in a ratio of 4 to 1. Decision rules constructed on the training set
were validated on the test set. The procedure was repeated 1000 times
to obtain acceptable reproducibility of results. The final decision rules
are the most relevant rules of all the repetitions.

3. Results

Decision rules contain the most important information character-
izing pellets in class 1 (optimal shape) and class 2 (inappropriate
shape), that is, the characteristics of pellets taking the spherical form
(AR≤ 1.1), or non-spherical form (AR > 1.1). The rules presented in
Tables 3 and 4 are ranked according to rule support value. Condition
attributes that were not included in decision rules during the analysis
were removed from the tables.

Strong decision rules, supported by a large number of objects, with

high confirmation measure s obtained for class 1 (Table 3) allow to
indicate condition attributes and their ranges for spherical pellets.
Those features include:

• Rule 1: If API solubility≤ 0.8 g/l and loss on drying ≥82.7%, then
class 1;

• Rule 2: If logP API≤ 0.5 and amount of starch≤ 20% and number
of die holes≥ 23 and loss on drying≥ 70.9%, then class 1;

• Rule 4: If Amount of API≥ 40.0% and logP API≤ 0.5 and amount
of κ-carrageenan (Genugel 911)≥ 20.0% and number of die
holes≥ 23 and loss on drying≥ 74%, then class 1;

• Rule 6: If API solubility≤ 0.7 g/l and loss on drying 79–109.84%,
then class 1;

• Rule 10: If amount of API≤ 40% and logP API≤ 0.5 and amount of
lactose≤ 40% and lack of starch and number of die holes≥ 23,
then class 1.

The selected decision rules can be used as a guide to optimize pellet
composition and extrusion and spheronization process parameters re-
sulting in optimum shape pellets.

Strong decision rules were also obtained for class 2 of the pellets
(Table 4). They provide information about the attributes and their va-
lues that adversely affect the shape of the resulting pellets, i.e., the
composition and process parameters that are not worth using. Those
features include:

• Rule 1: If the screw number of die holes≤ 13 and rotation
speed≤ 750 rpm and loss on drying≤ 82.1%, then class 2;

• Rule 2: If API solubility≤ 0.8 g/l and screw speed≤ 125 rpm and
number of die holes≤ 13 and rotation speed≤ 750 rpm and loss on
drying≤ 82.1%, then class 2;

• Rule 3: If solubility≤ 0.8 g/l and number of die holes≤ 13 and
rotation speed≤ 750 rpm and spheronization temperature≤ 30 °C
and loss on drying≤ 82.1%, then class 2

• Rule 4: If logP API≥ 1.2 and lack of MCC and rotation
speed≤ 750 rpm and loss on drying≤ 82.1%, then class 2;

• Rule 6: If lack of lactose and mannitol and MCC and rotation
speed≤ 750 rpm and loss on drying≤ 73.5%, then class 2;

• Rule 11: If logP API≥ 1.2 and lack of lactose and lack of CaHPO4

and amount of κ-carrageenan (Genugel 911)≥ 20% and rotation
speed≤ 750 rpm and spheronization temperature≤ 25 °C, then
class 2;

Table 3
Decision rules for class 1 pellets.

No. API [%] LogP Solubility
[g/l]

Lactose [%] Starch [%] Gel911 [%] Gel812 [%] Number of die
holes

Loss on drying
[%]

Rule
support

Rule
strength

Confirmation
measure s

1 ≤0.8 ≥82.7 50 0.2202 0.52
2 ≤0.5 ≤20 ≥23 ≥70.9 46 0.2026 0.51
3 ≤0.8 ≥85.1 46 0.2026 0.51
4 ≥40 ≤0.5 ≥20 ≥23 ≥74.0 45 0.1982 0.52
5 ≤0.7 82.51–116.05 44 0.1938 0.51
6 ≤0.7 79.0–109.84 43 0.1894 0.58
7 85.1–97.18 43 0.1894 0.51
8 ≤0.7 82.51–106.35 40 0.1762 0.51
9 86.2–97.53 38 0.1674 0.52
10 ≤40 ≤0.5 ≤40 ≤ 0 ≥23 37 0.1629 0.51
11 86.3–97.53 36 0.1585 0.51
12 ≤0.7 86.92–106.35 35 0.1541 0.51
13 ≤0.7 82.7–102.38 35 0.1541 0.51
14 ≤0.7 86.92–104.36 34 0.1497 0.51
15 ≥8.33 ≤40 ≥77.5 32 0.1409 0.51
16 ≤0.7 ≥20 ≥77.9 31 0.1365 0.51
17 ≤0.7 ≤0 81.0–102.38 30 0.1321 0.51
18 ≤0.5 ≤0 ≥23 ≥79.0 28 0.1233 0.51
19 ≤0.7 89.36–109.84 28 0.1233 0.51
20 ≤0.7 ≥20 81.0–121.77 26 0.1145 0.51
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3.1. Predictive attribute significance

The results of the assessment of the significance of attributes in the
decision rules are presented in Fig. 1. The higher the value of the
condition attribute confirmation measure s, the greater its impact on
the correct classification of objects. Attributes related to extrusion and
spheronization, i.e., time and speed of spheronization, and number of
die holes, have the greatest impact on the correct classification of ob-
jects. Among the excipients that significantly affect the classification of
objects are amount of MCC, Genugel and lactose.

3.2. Results of stratified cross-validation

The average accuracy of the prediction is characterized by the
parameters presented in Table 5. To validate the results obtained with
VC-bagging, we performed the same type of stratified cross-validation
with Random Forest and logistic regression implemented in WEKA
toolkit (Frank et al., 2016). These results show that VC-bagging is
producing at least as good results as Random Forest, which is con-
sidered as an off-the-shelf robust classifier allowing to obtain very good
predictive accuracy. Both VC-bagging and Random Forest are produ-
cing better results than logistic regression.

4. Discussion

One of the basic methods of pellets production is a technique based
on extrusion and spheronization. The main substance forming the core
of the pellets is the MCC, which provides cohesiveness and binds the
granules (Heng and Koo, 2001). Attempts to replace the MCC with
other excipients encounter various technological problems at each stage
of the pellets manufacturing process (Dukić-Ott et al., 2009). Applied
substances have different physical and chemical properties and impact
on water absorption by E/S mass or on properties of pellets (Dukić-Ott
et al., 2009; Soh et al., 2008). These properties affect the quality of the
extrudate obtained and its usefulness for spheronization. Application of
overly plastic and sticky granules cause large, often oval pellets for-
mation. Whereas too rigid and dry granules crumble rapidly into a fine
fraction hardly subjected to spheronization (Umprayn et al., 1999).

The spherical granulate provides optimal pellet mass flow and easier
coating (to obtain modified release of the active ingredient). Therefore,
during the pellets production process spherical shape is one of the key
parameters of their evaluation (Thommes and Kleinebudde, 2007; Soh
et al., 2008; Umprayn et al., 1999; Podczeck et al., 1999; Koo and Heng,
2001). Initial evaluation of the shape of the pellets is a visual method.
Disadvantage of this method is lack of representative sample and sub-
jectivity of the investigator. However, it provides quick rejection of a
series of poorly made pellets or possibility of E/S process modification.
In order to conduct accurate and repetitive analysis of the shape mi-
croscopic techniques are combined with automatic evaluation of the
shape of the examined image (Thommes and Kleinebudde, 2007; Soh
et al., 2008; Umprayn et al., 1999; Podczeck et al., 1999; Koo and Heng,
2001). There are several ways to evaluate the shape of spherical par-
ticles in the literature. The most popular are: AR — aspect ratio, C —
circularity, PS — projection sphericity, and eR shape factor (Almeida-
Prieto et al., 2007).

AR and eR methods are most commonly used to evaluate spherical
pellets. Circularity is not a recommended parameter for shape analysis
because of the measurement errors in case of spherical irregularities
(Thommes and Kleinebudde, 2007; Podczeck et al., 1999).

The most commonly studied factor influencing the shape of pellets is
the amount of water in the extrudate (Thommes and Kleinebudde,
2007; Umprayn et al., 1999; Koo and Heng, 2001; Sousa et al., 2002;
Lustig-Gustafsson et al., 1999; Podczeck and Newton, 2014; Fechner
et al., 2003). Analysis of the decision rules received in class 1 (Table 3)
points the presence of the “loss on drying” attribute in most rules. It is
defined as a loss of water content from wet extrudate calculated in % in

reference to dry mass. The most often appearing range is coinciding
with the optimum observed by Thommes and Kleinebudde (2007), i.e.
81–117%. These are the amounts of water required to produce carra-
geenan pellets, which unlike MCC, binds more water during extrusion.
Formulations containing MCC are described by decision rules with the
attribute “loss on drying”≤ 44 and ≤56%. The effect of water on the
quality of the pellets is often described (Thommes and Kleinebudde,
2007; Soh et al., 2008; Podczeck et al., 1999; Almeida-Prieto et al.,
2007; Sousa et al., 2002; Lustig-Gustafsson et al., 1999). The diversity
of the water content required to obtain spherical pellets depends mainly
on the various solubility of the active substances and excipients con-
tained in the pellets (Lustig-Gustafsson et al., 1999).

Some problems arise with substances highly soluble in water.
During extrusion, some substances dissolve in water to give solutions
with increased viscosity (e.g. glucose). The addition of such substances
to the pellet core results in a sticky extrudate. Extrudates sticking to-
gether make it difficult to spheronize and the resulting pellets are large.
During drying the pellets hardness increase, which results in a higher
density (Wlosnewski et al., 2010). The fact that parts of the substance
dissolve in water cause a decrease in the amount of dry matter which
must be wetted. The solution is to reduce the amount of water added
during extrusion (Lustig-Gustafsson et al., 1999). The amount of water
and the way it is bound to the pellet mass affects the extrusion process.
The release of water while the mass is pressed through the sieve or
extruder matrix reduces the shear strain that occurs during this process.
In this case water acts as a lubricant (Wlosnewski et al., 2010). In-
creased shear strain during extrusion can cause a change in the struc-
ture or breakdown of MCC particles (Thommes and Kleinebudde, 2007;
Fechner et al., 2003). This results in receiving a less rigid extrudate
when carrageenan is applied. The “extrudates” plasticity has an impact
on the form of the granulate during spheronization. The plasticity of the
extrudate is necessary in order to acquire spherical shape of granules
during spheronization (Thommes and Kleinebudde, 2007; Fechner
et al., 2003). High water content in the extrusion mass cause problems
during spheronization e.g. extrudates splicing. In result, the pellets are
larger (Umprayn et al., 1999). Water or the liquid to solid ratio (L/S)
has always an influence on pellet quality, also for poorly water-soluble
substances (Thommes and Kleinebudde, 2007; Thommes and
Kleinebudde, 2008; Lustig-Gustafsson et al., 1999). Most of the gener-
ated decision rules containing the API solubility attribute confirm the
effect of low substance solubility in water (below 0.8 g/l). Some of the
rules also define the content of calcium phosphate that is an insoluble
excipient in the pellet mass.

Analyzed decision rules in a pellet class 1 specify the ranges of ex-
trusion and spheronization parameters. They indicate higher spher-
onization rates (750 and 1000 rpm) as well as the number of die holes
above 13. The condition attribute rank also shows that E/S parameters
significantly affect classification (spheronization speed, spheronization
time and number of die holes have the highest conformation coeffi-
cients s) (Fig. 1). If the number of die holes of extruder increase, the
shear stress exerted on the mass extruded through the sieve is reduced.
An important element of this process is the spheronization stage —
process time and spheronizer rotation speed. During this process
spherical pellets are formed. It was noted that the high spheronizer
rotation (750 and 1000 rpm) compensates the hardness and rigidity of
the extrudate (Thommes and Kleinebudde, 2007).

The energy delivered during such rotations is large enough for
granules to become plasticized and the particles are given the right
shape. Podczeck et al. noted that following parameters are important to
compare or scale up the pellets production process: detailed parameters
of the extruder and the spheronizer, the precision of the extrusion force,
and the angular velocity at spheronization (Podczeck and Newton,
2014). These observations have been confirmed in the decision rules of
the pellet set in class 2. The attribute “spheronization speed” was ob-
served only in class 2, i.e. the rotation of the spheronizer < 750 rpm
led to the incorrect pellets.
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Mendyk et al. used artificial neural networks (ANNs) to analyze the
data on which the pellet information system was based (Podczeck and
Newton, 2014). ANNs proved their suitability for the pharmaceutical
data analysis providing useful information about relationships gov-
erning pelletization procedure (Rojek et al., 2018; León Blanco et al.,
2018). It was found that some pellet properties are more formulation-
dependent, whereas others are more governed by API. Neural model-
ling allowed also to identify crucial variable sets for each of the ana-
lyzed problems based on the sensitivity analysis performed according to
the described methodology. Achieved results were convergent to those
presented in this paper. In the above-mentioned paper authors dis-
cretized certain ranges of technological parameters (high, medium,
low) needed to obtain spherical or non-spherical pellets. The manner in
which DRSA rules are presented using the actual range of parameters
seems to be more reliable and easier to interpret.

According to Mendyk et al., ANNs were used as predictive models
and data mining tools, thus leading to the identification of process
critical variables and possibly in the future to the identification of some
of the pelletization mechanisms (Mendyk et al., 2010). In our paper it is
also shown which process parameters are of the greatest importance
from the formulation point of view. Decision rules, based on DRSA,
show ranges of technological properties and parameters to be included
into pharmaceutical practice to obtain pellets with appropriate AR.

DRSA allows to discover relevant interactions between analyzed
condition attributes. Obtained decision rules represent these interac-
tions, showing conditions on selected attributes which jointly lead to a
given result. In the analyzed information system the values of techno-
logical parameters (spheronization time, speed, and temperature, screw
speed, and number of die holes) were almost the same in the whole
system. It was the result of previous studies, as mentioned before. While
these attributes do not enter to relevant interactions represented by
decision rules, they cannot be omitted in the information system, be-
cause of their importance in the manufacturing of pellets.

Ronowicz et al. used the decision tree methodology (multivariate
calibration technique) which allows to predict and to explain re-
lationships between the preparation technology and the final product

quality attribute (Ronowicz et al., 2015). A series of if-then rules pro-
vided deeper understanding and knowledge of factors affecting the
pellet aspect ratio. The spheronization speed, spheronization time,
number of holes and water content of extrudate have been recognized
as the key factors influencing pellet aspect ratio. Our study revealed
that the type and amount of excipients are also of great importance. In
this way, rough set theory technique allows not only to plan the para-
meters of production but also it is able to predict the type and amount
of excipients necessary to obtain pellets of required quality. Therefore,
DRSA is more informative than decision tree methodology. Similarly,
DRSA is not a black box method, because the decision rules are trans-
parent and easy to interpret. Therefore, it can be even called a “glass
box” (Greco et al., 2010), which is also in accordance with Quality by
Design concept, because this approach implies better knowledge man-
agement, and more transparent decision making.

5. Conclusions

The analysis based on rough set theory allows to discover the most
important relationships between the composition and the method of
production on one side, and the quality of the investigated drug dosage
forms on the other side.

The induced decision rules, along with Bayesian confirmation
measures, allow to define the important parameters influencing the
quality of the obtained drug dosage forms. To obtain spherical pellets
the amount of water in the pellet mass, and the composition of the
pellets (excipients used) were of the most important influence, taking
into account considered technological parameters (spheronization time,
speed, temperature, screw speed, and number of die holes).

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ejps.2018.08.027.
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Fig. 1. Predictive attribute significance.

Table 5
Cross validation parameters.

VC-bagging Random forest Logistic regression

[Avg. no.] [Avg. %] [Avg. no.] [Avg. %] [Avg. no.] [Avg. %]

Correctly classified instances 184.12 81.13 182.14 80.24 174.76 76.99
Incorrectly classified instances 42.82 18.86 44.86 19.76 52.24 23.01
Average classification accuracy 78.47 77.60 73.98
Average precision 81.25 80.13 76.56
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